Structure–function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune‐suppressing activity from recognition
نویسندگان
چکیده
Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full virulence. Here we investigate the virulence function of Avr2 and determine its crystal structure. Transgenic tomato and Arabidopsis expressing either wild-type ΔspAvr2 (deleted signal-peptide) or the ΔspAvr2R45H variant become hypersusceptible to fungal, and even bacterial infections, suggesting that Avr2 targets a conserved defense mechanism. Indeed, Avr2 transgenic plants are attenuated in immunity-related readouts, including flg22-induced growth inhibition, ROS production and callose deposition. The crystal structure of Avr2 reveals that the protein shares intriguing structural similarity to ToxA from the wheat pathogen Pyrenophora tritici-repentis and to TRAF proteins. The I-2 resistance-breaking Avr2V41M , Avr2R45H and Avr2R46P variants cluster on a surface-presented loop. Structure-guided mutagenesis enabled uncoupling of virulence from I-2-mediated recognition. We conclude that I-2-mediated recognition is not based on monitoring Avr2 virulence activity, which includes suppression of immune responses via an evolutionarily conserved effector target, but by recognition of a distinct epitope.
منابع مشابه
Uptake of the Fusarium Effector Avr2 by Tomato Is Not a Cell Autonomous Event
Pathogens secrete effector proteins to manipulate the host for their own proliferation. Currently it is unclear whether the uptake of effector proteins from extracellular spaces is a host autonomous process. We study this process using the Avr2 effector protein from Fusarium oxysporum f. sp. lycopersici (Fol). Avr2 is an important virulence factor that is secreted into the xylem sap of tomato f...
متن کاملThe effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly.
To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key molecules in determining disease susceptibility or resistance. We show here that Avr2, secreted by the v...
متن کاملA nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2
Plant pathogens secrete effector proteins to promote host colonization. During infection of tomato xylem vessels, Fusarium oxysporum f. sp. lycopersici (Fol) secretes the Avr2 effector protein. Besides being a virulence factor, Avr2 is recognized intracellularly by the tomato I-2 resistance protein, resulting in the induction of host defenses. Here, we show that AVR2 is highly expressed in root...
متن کاملThe effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection
Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1 (Avr3), Six3 (Avr2), Six5, and Six6 are required for full virulence, denoting them as effectors. To invest...
متن کاملPECTIC ENZYME PATTERNS OF FUSARIUM OXYSPORUM VIRULENT ISOLATES FROM CHICKPEA IN IRAN
The pectic enzymes produced in vitro by 8 isolates (5 Highly virulent and 3 Weakly virulent) of Fusarium oxysporum , were detected by spectrophotometry, and characterized by polyacrylamide gel electrophoresis with substrate-containing gels (zymogram). Analysis of the polygalacturonase (PG) isozyme banding patterns (zymogram) identified two distinct phenotypes among the isolates from chickpea (C...
متن کامل